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Co-morbid obsessive—compulsive disorder and
depression: a Bayesian network approach
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Background. Obsessive—compulsive disorder (OCD) is often co-morbid with depression. Using the methods of network
analysis, we computed two networks that disclose the potentially causal relationships among symptoms of these two
disorders in 408 adult patients with primary OCD and co-morbid depression symptoms.

Method. We examined the relationship between the symptoms constituting these syndromes by computing a (regular-
ized) partial correlation network via the graphical LASSO procedure, and a directed acyclic graph (DAG) via a Bayesian
hill-climbing algorithm.

Results. The results suggest that the degree of interference and distress associated with obsessions, and the degree of
interference associated with compulsions, are the chief drivers of co-morbidity. Moreover, activation of the depression
cluster appears to occur solely through distress associated with obsessions activating sadness — a key symptom that
‘bridges’ the two syndromic clusters in the DAG.

Conclusions. Bayesian analysis can expand the repertoire of network analytic approaches to psychopathology. We

discuss clinical implications and limitations of our findings.
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Introduction

Obsessive—compulsive disorder (OCD) is characterized
by obsessions — intrusive thoughts, images, and urges
that cause distress, and by compulsions — repetitive
actions performed to reduce obsessional distress
(American Psychiatric Association, 2013). Among
American adults, OCD has 12-month and lifetime
prevalence rates of 1.2% and 2.3%, respectively
(Ruscio et al. 2010).

Many people with OCD become depressed.
Epidemiological (Ruscio et al. 2010) and naturalistic
clinical studies (Pinto et al. 2006) report lifetime rates
of major depression in patients with OCD as high as
40% and 67.2%, respectively. Another survey of
patients with OCD revealed rates of lifetime depres-
sion in 73.4% and 81.2% of early- and late-onset
cases, respectively (Millet et al. 2004). Moreover, OCD
usually precedes the emergence of depressive mood
disorders (e.g. Welner et al. 1976; Ricciardi &
McNally, 1995), especially in patients with early-onset
OCD (Millet et al. 2004).
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Co-morbid depression in people with OCD has
important clinical implications. Severe depression can
impede habituation to stimuli provocative of obses-
sions (Foa, 1979), thereby undermining otherwise
efficacious behavior therapy for OCD (e.g. Foa et al.
2005). Certain symptoms of depression, including
insomnia, fatigue and diminished motivation, may
interfere with reduction in obsessional distress (e.g.
Abramowitz et al. 2000), and addressing co-morbid
depression symptoms may detract from the time
needed to treat the primary OCD symptoms (e.g.
Storch et al. 2008). Moreover, patients with OCD and
depression are at elevated risk for attempting suicide
(Torres et al. 2011). In one study, 27% of patients
with OCD had a history of attempted suicide
(Kamath et al. 2007); depression and hopelessness
were major correlates of attempts.

As Ruscio et al. (2010) wrote, further research ‘is
needed to specify the causal mechanisms’ (p. 61) pro-
ducing high rates of co-morbid disorders, including
depression, in people with OCD. Tackling this issue,
Zandberg et al. (2015) conducted lagged multilevel
mediational analyses to test whether improvement in
OCD symptoms mediated improvement in depressive
symptoms or vice versa in 40 patients with primary
OCD who had undergone behavior therapy while tak-
ing a serotonin reuptake inhibitor. They found that
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reduction in OCD symptoms accounted for 65% of the
reduction in depressive symptoms, whereas improve-
ment in depressive symptoms only partially mediated
subsequent improvement in OCD symptoms, account-
ing for only 20% of the variance.

The aim of our study was to apply network analytic
methods to characterize the functional relationships
among symptoms of OCD and depression in patients
with primary OCD. In contrast to both the traditional
latent categorical (e.g. Guze, 1992) and latent dimen-
sional (e.g. Helzer et al. 2008) models of mental disorder,
the network perspective does not view symptoms as
reflective of an underlying disease entity (Borsboom,
2008; Borsboom & Cramer, 2013). Rather, it construes
symptoms as constitutive of disorder. An episode of dis-
order emerges as a consequence of causal interactions
among symptoms themselves. Co-morbidity arises as a
natural consequence of intertwined symptom networks
(Cramer et al. 2010). That is, symptoms characteristic of
one disorder may cluster together (e.g. distress associated
with obsessions may directly trigger compulsions),
whereas symptoms characteristic of a co-morbid disorder
may likewise cluster together (e.g. guilt triggering suicidal
ideation). Yet despite their syndromic distinctiveness,
both disorders may share certain features (e.g. sad
mood) — bridge symptoms — that link the two clusters
into a single network of interacting symptoms.

To accomplish this aim, we analysed symptoms of
OCD and depression in 408 adult patients with a pri-
mary diagnosis of OCD upon their admission to a cog-
nitive-behavioral treatment center for the disorder. We
computed two networks that illustrate statistical links
(edges) between pairs of symptoms (nodes). First, we
applied the graphical LASSO (least absolute shrinkage
and selection operator; Friedman et al. 2008) algorithm
to obtain a (regularized) partial correlation network
whose edges depict the magnitude of direct association
between pairs of symptoms after adjusting for the
influence of all other symptoms in the network. In con-
trast to association networks that represent zero-order
correlations between symptom pairs (e.g. Fig. 2,
McNally et al. 2015), the network produced by the
graphical LASSO depicts direct associations between
pairs of symptoms, thereby excluding any spurious
associations attributable to the influence of other
symptoms. However, one limitation is that the net-
work is undirected; one cannot tell whether a partial
correlation between symptom X and symptom Y
signifies that symptom X predicts the activation of
symptom Y (or vice versa) or whether the direction
of prediction (and possibly influence) occurs both
ways.

Second, using a Bayesian network approach, we esti-
mated a directed acyclic graph (DAG) that best fits our
data. In contrast to the edges in association and partial

correlation networks, those in a DAG have an arrow-
head at the tip of each edge, signifying the direction
of prediction and possibly causal influence.

Insummary, the purpose of network analysis is to char-
acterize relationships among symptoms as a plausible
causal system. Our methods constitute two ways of esti-
mating a model that parsimoniously, but accurately,
approximate the symptom structure. Implementing dif-
ferent algorithms, each method has its strengths and
weaknesses; neitheris ‘better’ than the other. Forexample,
although our DAG excludes the possibility of feedback
loops (cycles) among symptoms, it does represent the dir-
ection of prediction and potential causality asits edges are
directed. Agnosticregarding edge direction, the graphical
LASSO permits bidirectional edges between symptoms.
Sulffice it to say, both the LASSO (Tibshirani, 2011) and
the DAG (Scutari & Denis, 2015) are well established in
network science and statistics.

Method
Subjects

We used archival admission data from 408 patients
treated between 30 July 2012 and 22 June 2015 in the resi-
dential and intensive out-patient units of the Obsessive—
Compulsive Disorder Center at Rogers Memorial
Hospital based in Oconomowoc, Wisconsin. Upon enrol-
ling in the program, patients received a primary diagnosis
of OCD and they provided written informed consent to
have their de-identified data used for research (see
Supplementary material). In addition, 102 had a
co-morbid diagnosis of major depressive disorder, 48
had a co-morbid diagnosis of depression ( not otherwise
specified), and three had a diagnosis of dysthymia. A
licensed psychiatrist conducted the clinical diagnostic
interviews. Patients ranged from 18 to 69 years of age
(mean=31.1, s.0.=12.2 years). There were 193 men
(47.3%) and 215 women (52.7%). The racial/ethnic break-
down was Caucasian (1 =381), African-American (n=7),
Asian (n=14) and other (n=6).

Measures

Yale—Brown Obsessive Compulsive Scale — self-report
(Y-BOCS-SR; Steketee et al. 1996)

We used Steketee et al.’s (1996) self-report version of
the Y-BOCS (Goodman et al. 1989), a 10-item instru-
ment evaluating the severity of obsessions and com-
pulsions during the previous week. Total scores
range from 0 to 40, and a score of 16 (or higher)
signifies clinically significant symptom severity. Five
items pertain to obsessions, and five pertain to com-
pulsions; each is rated on a five-point Likert scale ran-
ging from 0 (no symptoms) to 4 (extreme). Like the
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Table 1. Symptoms on the Y-BOCS-SR and QIDS-SR*

Symptom Mean (s.D.)

Y-BOCS-SR
1. Time consumed by obsessions 2.95 (0.89)
2. Interference due to obsessions 2.69 (0.82)
3. Distress caused by obsessions 2.81 (0.76)
4. Difficulty resisting obsessions 1.98 (0.93)
5. Difficulty controlling obsessions 2.67 (0.76)
6. Time consumed by compulsions 2.60 (0.93)
7. Interference due to compulsions 2.58 (0.88)
8. Distress caused by compulsions 2.71 (0.84)
9. Difficulty resisting compulsions 2.16 (0.89)
10. Difficulty controlling compulsions 2.60 (0.76)

QIDS-SR
1. Sleep-onset insomnia 1.20 (1.07)
2. Middle insomnia 1.44 (1.07)
3. Early morning awakening 0.81 (1.07)
4. Hypersomnia 1.01 (0.99)
5. Sadness 1.55 (0.94)
6. Decreased appetite 0.49 (0.72)
7. Increased appetite 0.44 (0.87)
8. Weight loss 0.50 (0.94)
9. Weight gain 0.67 (1.04)
10. Concentration impairment 1.48 (0.87)
11. Guilt and self-blame 1.56 (1.17)
12. Suicidal thoughts, plans or attempts 0.63 (0.82)
13. Anhedonia 1.27 (1.05)
14. Fatigue 1.33 (0.95)
15. Psychomotor retardation 0.66 (0.81)
16. Agitation 1.10 (0.93)

Y-BOCS-SR, Yale-Brown Obsessive Compulsive Scale —
self-report version (Steketee et al. 1996); QIDS-SR, Quick
Inventory of Depressive Symptomatology — self-report ver-
sion (Rush et al. 2003); s.p., standard deviation.

? The Y-BOCS-SR is a five-point scale ranging from 0 to 4,
and the QIDS-SR is a four-point scale ranging from 0 to 3.

Y-BOCS interview (Goodman et al. 1989), the self-
report version has very satisfactory psychometric
properties (Steketee et al. 1996). Patients completed it
upon their admission to the treatment program. Their
mean Y-BOCS-SR score was 25.76 (s.0.=5.39; range
16-40). The means and standard deviations for each
Y-BOCS-SR symptom appear in Table 1.

To fit labels inside nodes, we used the following
abbreviations for the Y-BOCS-SR symptoms. The
abbreviation appears in italics, the full item appears
in parentheses. The symptoms were: (1) obtime (time
consumed by obsessions); (2) obinterfer (interference
due to obsessions); (3) obdistress (distress caused by
obsessions); (4) obresist (difficulty resisting obsessions);
(5) obcontrol (difficulty controlling obsessions); (6)
comptime (time consumed by compulsions); (7) compin-
terf (interference due to compulsions); (8) compdis
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(distress caused by compulsions); (9) compresis (diffi-
culty resisting compulsions); and (10) compcont (diffi-
culty controlling compulsions).

Quick Inventory of Depressive Symptomatology —
self-report version (QIDS-SR; Rush et al. 2003)

Upon entering the program, patients completed the
QIDS-SR. This questionnaire contains 16 depression
symptoms, and each symptom is scored on a four-
point Likert scale ranging from 0 to 3; total scores
range from 0 to 64. Their mean total score on the
QIDS-SR was 12.75 (s.0.=5.35; range 1-25). The
means and standard deviations for each QIDS-SR
symptom appear in Table 1. To fit labels inside the
nodes, we used the following abbreviations for the
QIDS-SR symptoms in the order of their appearance
in the questionnaire. The abbreviation appears in ita-
lics, the full item appears in parentheses, with any
clarifying comments. The symptoms were: (1) onset
(sleep-onset insomnia); (2) middle (difficulty falling
back asleep in the middle of the night); (3) late (early
morning awakening); (4) hypersom (hypersomnia); (5)
sad (sadness); (6) decappetite (decreased appetite); (7)
incappetite (increased appetite); (8) weightloss (weight
loss, within the last 2 weeks); (9) weightgain (weight
gain, within the last 2 weeks); (10) concen (concentra-
tion/decision-making impairment); (11) guilt (guilt
and self-blame); (12) suicide (suicidal thoughts, plans
or attempts);, (13) anhedonia; (14) fatigue; (15) retard
(psychomotor retardation); and (16) agitation.

In summary, for each network, there were 26 nodes,
each reflecting the severity of an OCD symptom or a
depression symptom.

Networks
Partial correlation network (graphical LASSO)

For our first analysis, we estimated a network via a
graphical Gaussian model whereby edges signify con-
ditional independence relationships among the nodes
(i.e. partial correlations between pairs of nodes control-
ling for the influence of all other nodes; e.g. Epskamp
& Fried, 2016). The thickness of an edge indicates the
magnitude of the association between the two nodes
it connects. Because networks involving the estimation
of so many parameters are likely to result in some
false-positive edges, we regularized the model by run-
ning the graphical LASSO (Friedman et al. 2008). This
procedure implements an L1 penalty, estimating a
sparse inverse covariance matrix that results in shrink-
age such that trivially small partial correlations are dri-
ven to zero and thus do not appear in the graph.
Partial correlations computed in this manner are called
regularized partial correlations. A sparse network is a
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parsimonious one that best accounts for the covariance
among nodes while endeavoring to minimize the num-
ber of depicted edges. The upshot is that only the
strongest partial correlations, and hence possible can-
didates for genuine and potentially causal associations,
remain visible.

We used the R packages ggraph (Epskamp et al. 2012)
and glasso (Friedman et al. 2014) to compute this net-
work (see Supplementary material). Epskamp et al.’s
(2012) ggraph package furnishes an extended Bayesian
information criterion (EBIC) model comparison pro-
cedure that ascertains the tuning parameter that opti-
mizes model fit as well as parsimony (Chen & Chen,
2008), given a specific value of the hyperparameter j.
Following Beard et al. (2016), we set the initial value
of y to 0.5. In summary, the procedure estimates 100
different models varying in their sparsity ranging
from 0 to 1.00, and the model with the lowest EBIC
value is retained as the one that best maximizes likely
genuine edges while minimizing likely false ones
(Epskamp & Fried, 2016).

We also computed strength centrality and between-
ness centrality — two metrics signifying the importance
of a node (symptom) to the network (Freeman, 1978/
1979). The first is calculated by summing the weights
of all edges connected to a node, whereas the second
indicates the number of times that a node lies on the
shortest path between two other nodes!t.

Highly central symptoms have clinical relevance.
Activation of a highly central symptom increases the
likelihood of activation spreading to other symptoms
in virtue of the magnitude and number of its connec-
tions to them. If the requisite symptoms activate, an
episode of disorder occurs. Conversely, successfully
treating a highly central symptom should foster
quicker recovery than treating a less central symptom.

However, a very important caveat qualifies the fore-
going statements. Our undirected partial correlation
network depicts associations between pairs of symp-
toms, controlling for the role of all other symptoms in
the network, but the edges do not indicate whether
symptom X predicts activation of symptom Y (or vice
versa) or both. The foregoing statements hold true only
if clinical intervention successfully deactivates symptom
X and only if the direction of influence runs from symp-
tom X to symptom Y. In contrast, directed networks
(such as our Bayesian one described below) have edges
with arrowheads at their tips, signifying the direction
of prediction and potentially causal influence.

Finally, following Epskamp et al. (2016a), we tested
the stability of the network by applying the R package
bootnet. Computing 1000 bootstrapped networks, we

t The notes appear after the main text.

used these to estimate the stability of the centrality
metrics and the confidence intervals for the strength
of each edge.

Bayesian network (DAG)

We computed a Bayesian? network, embodied in a
DAG, by running the hill-climbing algorithm provided
by the R package, bnlearn (Scutari, 2010). As implemen-
ted by bnlearn, the bootstrap function computes the
structural aspect of the network by adding edges,
removing them, and reversing their direction to opti-
mize a goodness-of-fit target score (e.g. BIC). This
step only determines whether an edge exists or not;
no edge weights are computed yet. We randomly
restarted the process with different candidate edges
linking different symptom pairs, perturbing the sys-
tem, and so forth3. As this iterative procedure unfolds,
the algorithm discerns the structure of the network.

To ensure that the resultant network was stable, we
conducted bootstrapping by extracting 1000 samples
with replacement, computing a network for each sam-
ple, and then averaging them to obtain the resultant
network. There are two steps to this procedure. First,
we ascertained how frequently an edge appears in
the 1000 bootstrapped networks. If an edge appeared
in at least 85% of these networks (Sachs et al. 2005),
we retained it in the final, averaged DAG.
Accordingly, such a sparse DAG depicts only those
edges nearly certain to be genuine.

Second, we ascertained the direction of each edge in
the 1000 bootstrapped networks. For example, if an
edge runs from symptom X to symptom Y in at least
51% of the bootstrapped networks, then this direction
will appear in the final, averaged network. In sum-
mary, we first determined the structure of the network
(i.e. symptom to symptom connections), and then
determined the direction of each edge.

The bnlearn program provides a BIC value for each
edge. The larger the absolute BIC value, the more dam-
aging it would be to model fit if one were to remove
the edge from the network. Accordingly, high absolute
BIC values indicate how important an edge is to the
model that best characterizes the structure of the
data. The thickness of an edge reflects the magnitude
of its BIC value. We computed the identical network,
but had edge thickness reflect the probability that the
depicted direction of the edge occurred as shown in
the graph. For example, if an edge went from symptom
X to symptom Y in 95% of the 1000 bootstrapped net-
works, it would appear very thick. If it went from
symptom X to symptom Y in only 55% of the boot-
strapped networks, it would appear relatively thin.

Finally, Scutari & Nagarajan (2013) have devised a
statistically motivated procedure for identifying
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edges for retention in Bayesian networks that matches
ad hoc methods (e.g. Sachs et al. 2005) in terms of spe-
cificity (i.e. rejecting false edges) and outperforms them
in terms of sensitivity (i.e. retaining true edges). On the
other hand, their method results in less sparse net-
works. We used both methods.

Ethical standards

All procedures contributing to this work comply with
the ethical standards of the relevant national and insti-
tutional committees on human experimentation and
with the Helsinki Declaration of 1975, as revised in
2008.

Results

Regularized partial correlation network (graphical
LASSO)

The (regularized) partial correlation network appears
in Fig. 1. It is immediately evident that symptoms of
OCD (gray nodes) cluster together as do those of
depression (white nodes), but edges between symp-
toms of each cluster connect the syndromes.

The edges in this sparse network are likely genuine,
and signify direct (not spurious) associations between
pairs of symptoms. The vast majority of the edges
represent positive correlations. Among the strongest
edges are the link between the inability of patients to
resist obsessions and to resist compulsions; sadness
and suicidal ideation; fatigue and psychomotor retard-
ation; amount of time consumed by obsessions and the
distress associated with them. Six edges represent
negative correlations, and most are unsurprising.
These occur between the following symptom pairs:
weight loss and weight gain; increased appetite and
decreased appetite; decreased appetite and weight
gain; hypersomnia and late insomnia (early morning
awakening); hypersomnia and middle insomnia; sui-
cidal ideation and the amount time engaged in com-
pulsive rituals.

Fig. 2 is a centrality plot that illustrates three (stan-
dardized) centrality metrics: strength, betweenness
and closeness. The five symptoms having the greatest
node strength centrality were fatique, interference due
to compulsions, sadness, anhedonia and distress caused
with obsessions. Sadness and anhedonia, the two gate-
way symptoms, at least one of which is required for
a diagnosis of depression, were highly central nodes
in terms of the number and strength of the connections
with other elements of the network. Distress associated
with obsessions is another finding that dovetails with
clinical observation. Indeed, distress arising from the
appraisal of intrusive thoughts as dangerous, morally
repugnant, or otherwise unacceptable is deemed
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central to the etiology and maintenance of OCD (e.g.
for a review, see Hezel & McNally, 2016).

The five nodes having the highest betweenness cen-
trality were anhedonia, sadness, distress associated with
obsessions, guilt and difficulty controlling compulsions.

Online Supplementary Fig. S1 depicts the average
correlation of a node’s centrality in the bootstrapped
samples with its centrality in the original estimated
network as a function of the percentage of subjects in
the sample. For example, even when our samples com-
prised only 70% of the original subjects, the correla-
tions remained quite high, especially for strength
centrality. Confidence intervals for edge strength are
shown in online Supplementary Fig. S2.

Bayesian network

Fig. 3 depicts the DAG returned by the Bayesian net-
work analysis. Several features are apparent. First,
the predictive (and potentially causal) priority of
OCD symptoms stands out as these appear at the top
of the DAG. Second, there are two ‘islands’, one com-
prising depression symptoms related to difficulty
sleeping, and the other comprising depression symp-
toms related to appetite. Because the sparsity param-
eter ensures that only the strongest associations
remain in the network, this DAG suggests that these
two symptom islands do not figure prominently in
the maintenance of co-morbid OCD and depression.
Third, syndromic coherence again emerges for OCD
symptoms and for depression symptoms with the
exception of the two islands noted.

As Fig. 3 illustrates, the degree to which obsessions
interfere with patients’ lives directly influences the
degree with which compulsions likewise interfere with
patients’ lives and the degree with which patients experi-
ence distress concerning their obsessions. Distress about
obsessions, in turn, activates the bridge symptom of sad-
ness that connects OCD symptoms to those of depres-
sion. As evident in the previous networks, sadness
directly influences guilt and suicidal ideation, plans
and attempts. The main branch of the OCD segment of
the DAG culminates in patients failing to resist their
obsessions and compulsions just as the main branch of
the depression segment of the DAG culminates in psy-
chomotor agitation and suicidality.

The primary clinical relevance of a DAG is suggest-
ing what symptoms should be the primary targets of
therapeutic intervention. Upstream symptoms appear-
ing near the top of the network, such as the degree of
interference and distress caused by obsessions and the
degree of interference caused by compulsions, should
be primary targets as these appear to be the sources
of activation driving co-morbid OCD and depression
(Fig. 3). Note also the importance of sadness as the
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O Depression
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Fig. 1. Network constructed via the graphical LASSO depicting regularized partial correlations between pairs of obsessive—
compulsive disorder (OCD) and depression symptoms in patients with primary OCD. For details of the symptoms, see the

Method section.

only symptom bridging the OCD and depression clus-
ters. That it lies between the two syndromic clusters
means that OCD symptoms must first activate sadness
as the gateway to inciting the remaining symptoms in
the depression cluster.

Fig. 4 is a DAG computed via Scutari & Nagarajan’s
(2013) method. Their procedure returns a very similar,
but less sparse, DAG, such that the symptoms related
to eating and sleeping are functionally integrated into
the rest of the network.

Finally, online Supplementary Figs S3 and S4 depict
the identical DAGs computed via the Sachs ef al. (2005)
85% criterion for edge retention and the Scutari &
Nagarajan (2013) method, but with one difference. In
both graphs the thickness of an edge signifies the per-
centage of time that its direction occurred in the man-
ner depicted across the 1000 bootstrapped samples.

Discussion

The goal of network analysis in the field of psycho-
pathology is to discern potentially causal relationships

among symptoms of mental disorders and to charac-
terize an episode of disorder as a causal system. Yet
most work has involved cross-sectional data on
depression (e.g. Cramer et al. 2012), complicated grief
(Robinaugh et al. 2014) and post-traumatic stress dis-
order (McNally et al. 2015) among other syndromes.
Although correlation does not establish causation, it
is consistent with it. Moreover, the absence of an
edge between two symptoms provides strong evidence
that neither symptom causes the other.

We used two network analytic approaches to model
the relationship between symptoms of OCD and
depression in patients with primary OCD. Just as the
mean and median are differentially informative ways
to characterize the central tendency of a distribution,
so are the graphical LASSO and the DAG differentially
informative ways of characterizing symptoms as a
potentially causal system. Nevertheless, both tell a
similar story about the co-morbidity of OCD and
depression symptoms. Both revealed the syndromic
clusters of OCD and depression, and high-centrality
symptoms detected in the graphical LASSO network
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Fig. 2. Centrality plot for the graphical LASSO depicting standardized measures of node strength, betweenness and closeness.
For details of the symptoms, see the Method section.
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Fig. 3. A Bayesian network (directed acyclic graph; DAG) depicting obsessive-compulsive disorder (OCD) and depression
symptoms in patients with primary OCD. For details of the symptoms, see the Method section.

Downloaded from https:/www.cambridge.org/core. Harvard University, on 06 Jan 2017 at 21:05:42, subject to the Cambridge Core terms of use, available at https:/www.cambridge.org/core/terms.
http://dx.doi.org/10.1017/50033291716003287


http://dx.doi.org/10.1017/S0033291716003287
https:/www.cambridge.org/core
https:/www.cambridge.org/core/terms

£82€0091L16ZEE00S/L10L°0L/BI0 10p"Xp//:dNY

*sWI1/2402/6.10 8bplIqUIED MMM/:SA11Y 18 3|ge|ieA. ‘BsN JO SWIa) 8100 abpruquie) ayi 03 3123qNns ‘Z#:50:1Z 18 £10Z Uef 90 uo ‘Alsiaaiun pleatey 2103/6108bpLiquiesmmm/:sdiy woly papeojumod

Fig. 4. A Bayesian network (directed acyclic graph; DAG) depicting obsessive—compulsive disorder (OCD) and depression symptoms in patients with primary OCD with Scutari &
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tend to be those most crucial to the DAG (e.g. sadness,
anhedonia, fatigue). The DAG, however, underscored
the importance of OCD symptoms in this picture of
co-morbidity. The interference that obsessions produce
had structural priority in the DAG, seemingly consistent
with work by cognitive-behavioral therapists who
argue that appraisal of occasional thoughts as threatening
is a key to the etiology of the disorder (e.g. Salkovskis,
1985).

Our two networks have their strengths and
weaknesses. The network disclosed by the graphical
LASSO depicts (regularized) partial correlations
between symptom pairs, unaffected by other symp-
toms in the network. Yet because such a network is
undirected it cannot reveal whether symptom X is
the cause of symptom Y, or vice versa, or both.

The Bayesian analysis returned a DAG that identifies
the direction of prediction and potentially causal influ-
ence among symptoms. However, because our analysis
concerned cross-sectional data, we were unable to
model the effect of time (i.e. the temporal order of
symptom emergence). Yet the DAG does suggest
causal hypotheses testable via clinical intervention.
For example, it revealed sadness as the node linking
OCD symptoms with depression symptoms, implying
that preventing this mood from worsening in someone
with OCD symptoms would prevent the emergence
of full-blown depression and hence diagnostic
co-morbidity (Cramer et al. 2010).

Although cross-sectional data alone cannot confirm
causality, experts in Bayesian analysis emphasize that
one can nevertheless build a conjectural case for caus-
ality even in the absence of a randomized controlled
experiment (Pearl et al. 2016, p. xii). Occasionally, one
can draw on causal knowledge from other sources
(e.g. experiments; Sachs et al. 2005) to aid in causal
interpretation. Sometimes structural priority in the
DAG may imply temporal priority, even in an atem-
poral, cross-sectional dataset. Metaphorically speaking,
consider someone who views a house with three floors.
Knowledge of gravity enables an observer to conclude
that construction of the first floor was a causal pre-
requisite for construction of the second and third
floors even though the observer did not witness the
process of construction.

Other assumptions requiring satisfaction are as fol-
lows. One must be confident that there are no import-
ant variables affecting associations among symptoms
that have been omitted from the analysis (Pearl, 2011;
Scutari & Denis, 2015, pp. 119-120). Another assump-
tion is that the system does not involve any cycles
(‘loops’). In a DAG, activation flows only in one direc-
tion such that it never returns to the node of origin. Yet
cycles may figure in the etiology and maintenance of
some forms of psychopathology. For example, Clark
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(1986) holds that panic attacks arise when certain
bodily sensations (e.g. benign heart palpitations) are
misinterpreted as signifying imminent catastrophe
(e.g. a heart attack). Such interpretations incite fear
which, in turn, aggravates the bodily sensations, seem-
ingly confirming the person’s catastrophic misinter-
pretation. The cycle continues, culminating in a
full-blown panic attack, according to Clark. This acycli-
city requirement, requisite for a DAG, does not pertain
to networks computed via the graphical LASSO
whereby such self-reinforcing loops are permissible.

Although one cannot model loops in a DAG, one may
gain clues to the possibility of ‘hidden loops’ by examin-
ing the probability of an edge occurring in the direction
depicted in a DAG (see online Supplementary Figs S4
and S5). For example, consider an edge pointing from
symptom X to symptom Y in 51% of the bootstrapped
samples, and from symptom Y to symptom X in 49% of
thebootstrapped samples. Such instability in edge direc-
tion may suggest bidirectionality of influence.

In summary, the promise of Bayesian network ana-
lysis and other causal search procedures (Saxe et al.
2016) is only just beginning to be explored by clinical
researchers. Another important development concerns
vector autoregressive approaches thatincorporate a tem-
poral dimension to network analysis, thereby revealing
how symptom interaction unfolds over time (e.g.
Bringmann et al. 2015; Epskamp et al. 2016b). Moreover,
intra-individual networks that unfold over time encour-
age personalized methods of treating individuals that
acknowledge the heterogeneity among patients qualify-
ing for the same diagnosis. Taken together, these
approaches are likely to bring us closer to casually and
clinically relevant ways of characterizing psychopath-
ology (McNally, 2016; Borsboom, in press).

Supplementary material

The supplementary material for this article can be
found at https://doi.org/10.1017/50033291716003287
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Notes

! Conventional centrality metrics, such as node strength cen-
trality, are based on absolute values (e.g. Everett &
Borgatti, 2014). So, for example, if a node had two edges
connected to it, one weighted r=-0.5 and the other
weighted r=0.5, its edge strength would be 1.00 not
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zero. Indeed, such metrics can provide misleading results
for networks with many negative edges, necessitating the
development of new centrality metrics (Robinaugh et al.
2016). Fortunately, most psychopathology networks have
few, if any, negative edges as most symptoms tend to be
positively correlated.

The network counts as ‘Bayesian’ in that we estimate a
joint posterior for the graph structure and the parameter
estimates, given the data (Scutari & Denis, 2015, pp. 95—
111). The procedure has two parts: a structure-learning
part and a parameter-learning part. Hence, a Bayesian
learning network is fully characterized by the following
product: P(G, ®1D)=P(GID)P(®|G, D). For the first part,
let G denote the structure of the graph (i.e. DAG), and D
the data. Therefore, P(GID) is the posterior probability of
the DAG given the data, that is, P(GID) proportional to
P(G)P(DIG). For this first part, we used the score-based,
hill-climbing algorithm because it is reasonably fast and
it learns directed graphs. Once we have learned the struc-
ture, we proceed to the parameter-learning part whereby
we let ® denote the parameter vector such that P(®IG,
D). Either Bayesian or maximum likelihood approaches
can be used to compute the second part of the process.
Occasionally the algorithm for fitting Bayesian learning
networks ends up in a poor local maximum. Depending
on where the algorithm starts, the network structure
and the corresponding parameter estimates may vary
across networks. Indeed, this happened in our prelimin-
ary analyses. Therefore, to eliminate this problem, we

()

used different random restarts to avoid local maxima.
We explored five of them for the bootstrapped network.
For each of these five restarts, we performed 10 perturba-
tions, which reflect 10 attempts to insert, delete or reverse
an edge. The function then returns the best-fitting net-
work based on this

random restart/perturbation

procedure.
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